First Author:
2024: Nightingale, J, “Scanning for Dark Matter Subhalos in 54 strong gravitational lenses”, MNRAS 527: 10480
2023: Nightingale, J, “Abell 1201: Detection of an Ultramassive Black Hole in a Strong Gravitational Lens” MNRAS 521: 3298
2022: Nightingale, J, “PyAutoCTI: Open-Source Charge Transfer Inefficiency Calibration” ”, Submitted to Journal of Open Source Software
2022: Nightingale, J, “PyAutoGalaxy: Open -Source Multiwavelength Galaxy Structure & Morphology”, Journal of Open Source Software, 8:4475
2021: Nightingale, J, “PyAutoFit: A Classy Probabilistic Programming Language for Model Composition and Fitting“, Journal of Open Source Software 58: 2550
2021: Nightingale, J, “PyAutoLens: Open-Source Strong Gravitational Lensing“, Journal of Open Source Software 58: 2825
2019: Nightingale, J, “Galaxy structure with strong gravitational lensing: decomposing the internal mass distribution of massive elliptical galaxies“, MNRAS 489: 2049
2018: Nightingale, J, “AutoLens: Automated Modeling of a Strong Lens’s Light, Mass and Source“, MNRAS 478: 4738
2015: Nightingale, J, “Adaptive Semi-linear Inversion of Strong Gravitational Lens Imaging“, MNRAS 452: 2940
Supervised PhD Students:
2023: Etherington, A, “Strong gravitational lensing’s ‘external shear’ is not shear”, Submitted to MNRAS
2023: Etherington, A, “Beyond the bulge-halo conspiracy? Density profiles of Early-type galaxies from extended-source strong lensing”, MNRAS 521:6005
2022: Etherington, A, “Automated galaxy–galaxy strong lens modelling: No lens left behind”, MNRAS 512:3275
2022: He, Q, “Testing strong lensing subhalo detection with a cosmological simulation”, MNRAS 518:220
2022: He, Q, “Galaxy-galaxy strong lens perturbations: line-of-sight haloes versus lens subhaloes”, MNRAS 512:5862
2022: He, Q, “A forward-modelling method to infer the dark matter particle mass from strong gravitational lenses“, MNRAS 511:3046
Co-Author (More significant contributions listed higher):
2024: Mercier, W, “The COSMOS-Web ring: in-depth characterization of an Einstein ring”, Accepted A&A
2024: Casey, C, “COSMOS-Web: An Overview of the JWST Cosmic Origins Survey”, ApJ 954:31
2023: Zhang, L, “Discovery of a radio jet in the Cloverleaf quasar at z = 2.56”, MNRAS 524:3671
2023: Zhuyan, Z, “A Glimpse of the Stellar Populations and Elemental Abundances of Gravitationally Lensed, Quiescent Galaxies at z ≳ 1 with Keck Deep Spectroscopy” ApJ 948:132
2022: Cao, X, “Systematic errors induced by the elliptical power-law model in galaxy-galaxy strong lens modeling”, Res. Astron. Astrophys. 22 025014
2021: Amorisco, Nicola, “Halo concentration strengthens dark matter constraints in galaxy-galaxy strong lensing analyses”, MNRAS, 510:2464
2022: Knabel, S “Modeling Strong Lenses from Wide-Field Ground-Based Observations in KiDS and GAMA”, Submitted to MNRAS
2022: Diego, J, “Microlensing and the type Ia supernova iPTF16geu”, A&A 662, A34, 21
2015: Swinbank, Mark, “ALMA maps the Star-Forming Regions in a Dense Gas Disk at z ∼ 3”, Astrophysical Journal Letters 806:L17
2024: Berman, W, “Efficient PSF Modeling with ShOpt.jl: A PSF Benchmarking Study with JWST NIRCam Imaging” https://arxiv.org/abs/2401.11625
2015: Dye, Simon, “Revealing the complex nature of the strong gravitationally lensed system H-ATLAS J090311.6+003906 using ALMA”, MNRAS 442: 2258
2020: Yang, Chentao, “CO, H2O, H2O+ line and dust emission in a z = 3.63 strongly lensed starburst merger at sub-kiloparsec scales“, Astronomy & Astrophysics, 624, 23
2017: Diehl, Thomas, “The DES Bright Arcs Survey: Hundreds of Candidate Strongly Lensed Galaxy Systems from the Dark Energy Survey Science Verification and Year 1 Observations“, The Astrophysical Journal Supplement Series, 232, 15
2017: Massey, Richard, “Dark matter dynamics in Abell 3827: new data consistent with standard Cold Dark Matter“, MNRAS, 477, 669
2013: Dye, Simon, “Herschel-ATLAS: Modeling the first strong gravitational lenses”, MNRAS 440: 2013
2013: Calanog, Jae, “Lens Models of Herschel-Selected Galaxies From High-Resolution Near-IR Observations”, MNRAS 440: 2013